Search results for " vasculogenesis"
showing 3 items of 3 documents
High concentration of C-type natriuretic peptide promotes VEGF-dependent vasculogenesis in the remodeled region of infarcted swine heart with preserv…
2013
Vasculogenesis is a hallmark of myocardial restoration. Post-ischemic late remodeling is associated with pathology and function worsening. At the same time, neo-vasculogenesis helps function improving and requires the release of vascular endothelial growth factor type A (VEGF-A). The vasculogenic role of C-type natriuretic peptide (CNP), a cardiac paracrine hormone, is unknown in infarcted hearts with preserved left ventricular (LV) ejection fraction (EF). We explored whether myocardial VEGF-dependent vasculogenesis is affected by CNP.To this end, infarcted swine hearts were investigated by magnetic resonance imaging (MRI), histological and molecular assays. At the fourth week, MRI showed t…
C1q as a novel player in angiogenesis with therapeutic implication in wound healing
2014
We have previously shown that C1q is expressed on endothelial cells (ECs) of newly formed decidual tissue. Here we demonstrate that C1q is deposited in wound-healing skin in the absence of C4 and C3 and that C1q mRNA is locally expressed as revealed by real-time PCR and in situ hybridization. C1q was found to induce permeability of the EC monolayer, to stimulate EC proliferation and migration, and to promote tube formation and sprouting of new vessels in a rat aortic ring assay. Using a murine model of wound healing we observed that vessel formation was defective in C1qa(-/-) mice and was restored to normal after local application of C1q. The mean vessel density of wound-healing tissue and …
A COMPOSITE PLLA SCAFFOLD FOR REGENERATION OF COMPLEX TISSUES
2010
A composite biodegradable scaffold incorporating an integrated network of synthetic blood vessels was designed and prepared, in line with the requirements of a scaffold effectively supporting the regeneration of highly vascularized tissues. In other words, this composite scaffold should allow the regeneration of complex injured tissue (e.g. dermis) and, at the same time, favour the development of a vascular network on its inner, i.e. a 3D polymeric scaffolds embedding synthetic blood vessel-like structures for nutrient supply and metabolite removal. PLLA assures a high degree of biocompatibility and a low level of inflammation response upon implantation, while the embedded tubular vessel-li…